Marine Scientists Urge Government To Reassess Oil Spill Response

Special To Pipeline & Gas Journal
May 2012, Vol. 239 No. 5

Credit: Peterson et. al, BioScience, May 2012.

On the second anniversary of the Deepwater Horizon blowout, a national panel of researchers including University of Georgia marine scientist Samantha Joye has urged the federal government to reassess how it would respond to similar oil spills that might occur in the future.

The 22 researchers, in a paper published April 20 in the peer-reviewed journal Bioscience, noted that the 2010 Deepwater Horizon oil spill was unlike any other oil spill encountered previously. Although the well blowout occurred at unprecedented depths and released enormous quantities of oil (an estimated 4.9 million barrels or 206 million gallons), the response to cleanup and contain the oil followed a framework that assumed the oil’s behavior would mimic previous shallow-water and surface spills.

In addition to creating a new model for understanding how deep water oil spills occur, the authors argue for an increase in immediately accessible research funding following oil spills so that society can be better prepared to respond to future spills, should they occur. They also noted that the requirement of the federal Natural Resource Damage Assessment Process that requires cooperative decision-making between the government and the responsible party and mutual approvals of research studies slows down the process and limits the scope of studies that are conducted.

“So many aspects of this oil spill were unique—that it was an offshore, deep-water blowout; that both methane and oil were released from the wellhead into the pelagic ocean; that dispersants were used at both the sea surface and sea floor,” said Joye, the Athletic Association Professor in the University of Georgia’s Franklin College of Arts and Sciences.

“Doing science in response to the spill was an incredible challenge, and what we learned during the response led us all to the new spill response model that is described in our paper.”

The authors noted that the lack of a model for understanding deepwater spills may have hindered initial work on this disaster and obscured understanding of what actually happened in the key early days.

“The problem here is that scientific assessment would be faster and more thorough if this were a familiar type of spill,” said the study’s lead author, Charles “Pete” Peterson, a professor at University of North Carolina–Chapel Hill, who has been deeply involved in the study of Exxon Valdez environmental effects for more than two decades.

“But this was a new type of spill. We now have a sense that the bulk of the impact was probably in the mid-water and deep ocean. Who the heck knows what oil does to the mid-water pelagic and deep-dwelling critters?”

The figures of the model contrast (a) the traditional model for crude oil fate and effects that prevailed before the DWH blowout and (b) the newly emerging and still developing model of a deepwater blowout like the DWH.

To create their new model, a group of scientists convened under the auspices of the National Center for Ecological Analysis and Synthesis in 2010, while the spill was still active, to synthesize existing knowledge to anticipate the potential ecotoxicological effects of the spill. They highlighted major gaps in scientific understanding that must be addressed for society to confront the modern oil spill in an age in which drilling has moved into deeper water.